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Fourier Series is an expansion of a periodic function i f I
s sl s oo Peede netonmemsefen | - Fourier Transform

(FT) in temporal
domain

/ Fourier Transform

....... transforms a function in the
time domain into frequency domain
and the inverse 1s also valid....

The output in the frequency domain is
expressed in terms of the (temporal)
frequency.

Time Domain F:TI Frequency Domain



https://aavos.eu/glossary/fourier-transform/

Fourier Transform in spatial domain

*Now consider an image of a regular fluctuation.

By getting a closer look, across the horizontal direction; i.e., x direction,
the variation of bright and dark bands may be represented by sine or co-
sinusoidal signal of a spatial domain.

*With an appropriate method, an image can be Fourier transformed to
determine its spatial frequency components.

*For a more complicated image, a combination of harmonics are required.

*This idea is similar to the combination of harmonics to form a waveform
In the temporal domain.

» X



http://www.imagemagick.org/Usage/fourier/

Fourier-transform pair :
spatial position x and angular spatial frequency k

Since an image or optical information under investigation is spatial distributed, the
Fourier transform pair involves spatial position x and angular spatial frequency k.

Fourier-transform pair in one dimension can be written as

1 |
f(x) =5 JF(k) e tkxdk
F(k) = jf(x)eikxdx

*F(k) Is the Fourier transform of f(x).



Problem 0 : slit function

1 ;x| <
0 |x|>

a
Given a slit function in spatial domain as: f(x) = { z
2

*Determine the Fourier transform of f(x) in the spatial frequency domain




Solution

‘Recall  F(k) = " f(x)e**dx

*Substituting f(x) into the Fourier transform, we have F(k) = f_blffz ek dx

..b
F(k) = i(elkE— e 2 )——sm— =D,

Example of
sinx/x function
graph




Problem 1
Transform a Gaussian function

*Evaluate the Fourier transform of the Gaussian probability

function,
fix)
f(x) = Ce™%*’; where C = \/g Y Va/w
*An example of the bell-shaped curve is the cross- /
sectional irradiance distribution of a laser beam in the
TEM,, mode.
Transverse Laser Beam Modes .
0 o

Intensity Plot Beam Pattern



https://co2laserpowermeter.com/the-importance-of-measuring-your-co2-lasers-output-power/

Solution

*Recall the Fourier transform F(k) = F{f(x)}
F(k) = ffooof(x) e Xdx = f_oooo(ce—axz) etkX dx
— f_oooo(ce—ax2+ikx)ek2/4ae—k2/4a dx

_ f°° (Ce—(x\/E—ik/Z\/E)z—kz/éla) dx

Letting x\/Ja — i k/2+Ja = yields F(k) = \/%e"‘z/‘*a ffooo e B* dp

— —k?/4a ... [(® _—-x? _
= g~k"/4a v [ e dx =+m



Solution (cont.)

*Therefore, F(k) = F{f(x)} = e~k*/4a still in the form of Gaussian function with k
as the variable.

(a) fiv) (b) Fik) What are Oy
fx) = Ce™®* } Jajm F(k) = e~k*/4a and ¢, ?

N

—
/
Vv

-k

"« This is evident that as a increases, f(x) becomes narrower while, in contrast, F(k) broadens.
“« In other words, the shorter the pulse length, the broader the spatial frequency bandwidth.




The Dirac Delta Function

*In the space domain, an extremely small bright source of light embedded in a dark background
Is highly localized, two-dimensional, spatial pulse-a spike irradiance.

A convenient idealized mathematical representation of this sharply peaked stimulus is the Dirac
delta function (or Dirac impulse) 5(x).

1.1 - &

0% = =

+00
6(x)={0 x # 0 and J S(x)dx =1 0s [ E

oo x=0

04 - -]

00

0.2 se i i i i e by i i g s e e a il o i e e i i i il e i i i i i is. g
-2 -1 0 1

*This is an infinitely narrow pulse on x = 0. It is also known as the unit impulse function.



- - - (a) flx)=8(x)
The sifting property of 6 function
1
Generally, with the shift of origin of an amount x,, the delta function -
can be written as
0 x+x (b) flx)=Ad(x)
6(x—x0)={oo x=xg L
'

*This leads to a general form of the sifting property of the delta

function, ©

j 5(x — xo)f () dx = f(xo)




Problem 2
Fourier transform of o function

1) Determine the Fourier transform of §(x — x;)
2) Determine the Fourier transform of ¥ 8(x — x;)

3) Ifx,=+d/2and x,=-d/2, determine the Fourier transform of §(x — x;) + 6(x — x,)



Solution

) Recall  F(k) = [ f(x)e**dx
By substituting f(x) = §(x — x0), F(k) = [_._8(x — xo) e**dx .

Applying the sifting property, F(k) = J_. 8(x — xo) e**dx = et¥o .

2) Again, F(k) = ffooof(x) e dx
By substituting f(x) =%, 6 (x — xj) and applying the sifting property. If the function can be written as a
sum of individual functions, its

We have F(k) = Y; f:’oc;o 6(x — x]-) kX dy = Y, e lkx; C—— transform is simply the sum of
the transform of the component

I functions.

If ] —>o00, this summation represents a comb function.
In optics it is used to describe periodic structures such as diffraction gratings.




Solution (cont.)

3) Using the result from 2), Fourier transform of 6 (x — x;) + §(x — x,) can be written as

d
. . “w kd
F(k) = etf*1+ gtkx, :elk2+e ey = 2c0s —

Thus the transform of the sum of these two symmetrical &-function is a cosine function and

vice versa.
(a) ﬂx) (a) F(k) = A(k)

L

L h
b \/\\//\\/O\/

Two delta functions and their cosine-function transform



https://www.cv.nrao.edu/course/astr534/FourierTransforms.html

Problem 3
Fourier transform of asymmetric function

Calculate the Fourier transform of f(x)

) =8l (+5)] -6 [x—(-5)




Solution

‘Recall F(k) = ["_f(x)e**dx

Substituting  f(x) = into the above equation, then

F(k) = f°° {6 [x —( )] 6[ ( )] kxdx: using the sifting property

.. d
lk— lk;

—e z-¢e = 2isin kd/2

(a) fm B(k)

i /‘\ b\ /\ Two delta functions and
| their real sine-function
! / \/L \/ \ transform

n--




Problem 4

*Show that the Fourier transform of a constant A is the delta function with an amplitude 2rA.

(a) Y fix)=A F(k)




Solution

‘Recall F(k) = [~ f(x) e**dx

*Substituting f(X) = A into the above equation: F(k) = ffoooA ek*dx
=A[_e*dx e (A)
*We have to evaluate ffooo e'** dx and this can be done indirectly by using the fact that

F1(8(K)) :ﬁ = 8(k)e~H*dk = % ; from sifting property

-We then have FFL (3(k)) = 8(Kk) = — [, e dag --enneeev (B)
Substitute (B) into (A), F(k) = 2mA (k)



Fourier transform of two symmetrical
and asymmetrical d functions

Two delta functions and their cosine-function transform Two delta functions and their sine-function transform

(@  fou (b) Fih) = Ak (a)  fix) (b) Bik)
|

+ + o |

R

1 L . k x /\ -k
—dz 0 +d2 0 I ! 0 42 / 0 \/ \
d
-1+ ——2

*This shows that the Fourier transform of two symmetrical delta functions gives a cosine function.

|
oA
o=
aly
I
B
b
[y
[
——

*Also the Fourier transform of real and even function will also be real and even.




Two dimensional transform

*Optics generally involved two-dimensional signal: for example, the field across an
aperture or the flux-density distribution over and image plane.

*The Fourier transform pair take the form,

o0

1
(27)°

f(xy)=

o0

and F(kx,ky): _Hf(x, y)ei(kxx+kyy)dxdy

‘Where k, and k, are angular spatial frequencies.

[ [F (ke ky)e“(kX”kyy)dkxdky p—

Any non periodic function of

two variables f(x,y) can be synthesized
from a distribution of plane waves,
each with amplitude F(k,,k,) and
constant phase.




*Consider the Fraunhofer diffraction

Fraun hOfe I d iﬂ:raCti on (1) pattern due to an arbitrary aperture

: situated in an xy-plane (Aperture

A plane).
Incident Y -Plane monochromatic waves diffract
pm%ﬂ/‘ 1 from the aperture (xy) plane.
% (x,y,0) PELD) The diffraction pattern is observed
| In the XY-plane, called “spectrum
B x  plane”, a distance Z along the axis.
<l (y.2)  The contribution dE, at an arbitrary
point P due to the light amplitude
=P y from an elemental area da
" Aiperiure SpECtri surrounding point O In aperture IS
plane plane :
given by
Fraunhofer diffraction in the spectrum XY-plane due to e = (EAda> a7
an aperture in the xy-plane. P r



Fruaunhofer diffraction (2)

*Recall the contribution of electric field dE, at point P on spectrum plane:dE, = (EA—da) el(wt=kr)

r

Amplitude of the contribution term decreases with distance r (distance from point O to point P).

*The illumination of the aperture may be non-uniform and generally given as E, = E,(X,y).

*According to the figure in the previous page, r can be approximately givenas r = ry [1 — (xXJ;y 2

T
(derived in problem 5) ’

(xX+yY)

EAdXdy) eiwte—ik['ro— o
Z

*By substituting r in the phase of dE, and r in amplitude with Z, dE, = (

(xX + yY)

L(wt kro)
Upon integration over the area of the aperture, thus| E, = ( - ) [J Eq(x, y)e ro  dxdy




Problem 5

*From the figure,

r2=X-x)>+ —-y)*+(Z-0)2?
and

Y
e ) ¢ =X*+Y%+ 22
sothat 71?2 =rf—2xX —2yY + (x? + y2)
A(—ny,ﬂ) P(X.Y,2) 1
(xX +yY)|? .
ST =1|1—-2 5 ; x,y negligible
Using binomial expansion (1 + u)2
I 1
Pl 21 (I,}’:Z) — 1+(E>u+“'
xX +yY
//, — ...1,.:1,,0[1_( Zy)
Aperture Spectrum To
plane plane




Fraunhofer diffraction (3)

*Define the relative amplitude distribution A, of the electric field in the spectrum plane.

. (xX+yY)
A, = ZE, UG — ﬂ E,(x, y)e "o dxdy

: : : : kX kY
Also, introduction the angular spatial frequencies, &, = — andky =—
0 0

*This gives Ap(kX: ky) = JJEA()C, y)ei(kxx+kyy)dxdy

*This shows that the amplitude distribution or Fraunhofer diffraction pattern A, (ky.ky)
actually is the 2D Fourier transform of the aperture function E, (X,y).

*This also reveals that the inverse transform gives g , .y —

) j j Ay (kx, ky)e {kxx+kyy) g, de,



Fourier method in diffraction theory

*We have arrived at the key point: the field distribution in the Fraunhofer diffraction
pattern is the Fourier transform of the field distribution across the aperture (i.e., the
aperture function)

A, (e, k) = ﬂ E, (x, y)elkxx+kv¥) gy or Ay(ky ky) = F(Es(x,9))

*For each point on the image plane (spectrum plane), there is a corresponding spatial
frequency.

*The inverse transform iIs then

1 :
(27_[)2 Jpr (kX) kY)e_l(kxx-l-kyy)dede or EA(X, }7) = F_l{Ap(kx, ky)}

EA(.X', y) —



Visual concept of the diffraction

Single Slit Diffraction

Field distribution F_raunhpfer
across an aperture diffraction pattern

described by the ~ P oo Ap(ky, ky) = F(E4(x,y)) = Fourier
aperture function transform of the

E4 (x,y) aperture function

NOTE : The evaluation of the diffraction pattern from an
aperture is equivalent to take the Fourier transform of an
aperture function e.g. single slit, double slit, circular aperture etc.



https://ef.engr.utk.edu/hyperphysics/hbase/phyopt/mulslid.html

Problem 6
Fourier transform of a Single slit

*Assuming that there are no phase or amplitude variations across the aperture, the aperture
function E,(x,y) has the form of a square pulse,

f

b
Ey ;lyl SE
EA(.X',y) = 1

0 -||>b
T2

*Determine the field distribution from the single slit on the spectrum plane.



Solution

*From the given aperture function, this problem is really 1D Fourier transform along y axis.

Ap(ky ) = F(Es) " Ay (k)
= [ Eay) e™¥dy E, - A

=E, f_ggeikYYdy ‘
: y M—Lﬁwﬁé_*

. kyb
= Egbsinc (%) b2 +bl2 0 ky

* Note that the Fourier transform gives the diffraction in terms of the electric field
distribution NOT the irradiance.
« The diffraction pattern is composed a large number of spatial frequencies.



Single slit Fraunhofer irradance
diffraction pattern

(a) Single slit diffraction pattern.

= Monochromatic light passing through a
_ single slit has a central maximum and
— many smaller and dimmer maxima on
N either side. The central maximum is six
— times higher than shown.
b I - (b) The drawing shows the bright central
i maximum and dimmer and thinner
maxima on either side.

—

kyvb
g I =A%, (ky ) = E2yb?sin%c (%)

(a) (b)



Problem 7
Fourier transform of a rectangular aperture

*Assuming that there are no phase or amplitude variations across the aperture, the aperture
function EA(x,y) Is given by,

a b

By slxl=. vl <5

EA(.X',y) = 4 b b
0 slxl >3yl >3

*Determine the field distribution from the rectangular aperture on the spectrum plane.



Diffraction pattern or Fourier SO I Utl Oﬂ

transform of the rectangular
aperture

Ap(le ky) = F(EA(x, y))
=f_oooo f_oooo E,(x,y) etxXtkvy) dydy

a b
— EO f_zgelkxxdx fzbelkyydy
2 2

vV VV

_ (kxa\ . _(kyb
=Eyab sinc (%) sin ¢ (%)

Aperture function
( A large number of spatial frequencies are

distributed over the spectrum surface.

EA(X,y) — <



http://gsvit.net/tutorial/a_grating.php

Diffraction pattern of -For a transmission grating, the concept

i of the Fourier transform can be applied in
a( ratl Nng creating the diffraction pattern.

Fraunhofer diffraction pattern *The apertu re func_ti()n IHluminated by a
on the spectrum plane “plane wave Is considered to be a periodic
step function.

*The Fourier transform lens helps to
shorten the distance to the image plane.

*The Fraunhofer diffraction pattern, which
Is Fourier transform, Is produced on the
Image plane or spectrum plane.

-Diffraction spots on the image plane
represent the spatial frequencies.

*As the spots in the image plane get
f— Figure 13.26 Diffraction pattern of a grating. farth-er from th-e Central aX-IS, t-helr
assoclated spatial frequencies increase.




Ronchi ruling

-Consider an object with periodic structure
such as the Ronchi ruling, a grating of
parallel straight lines with large grating
space, whose opague and transparent
regions are of equal width.

*The object is illuminated from behind by a
monochromatic plane wave.

*The Ronchi ruling acts as a coarse grating
producing a series of bright spots that
correspond to the various order of
diffraction.



https://en.wikipedia.org/wiki/Ronchi_ruling

& vy Aperture function
t The aperture function introduced by Ronchi ruling can

| be represented by a periodic step function
| / P yap P
] | S

- P
| pattern denotes the presence of a specific
e spatial frequency, which is proportional
-2 : to its distance from the optical axis (zero-
-3 3 frequency) location.
- 0 ] -An ulﬂT& atial
E ‘ I an 3_-'"- 3_11' il | ‘ I I’ref]:u:nc'yp
a g O @ g m {2 mia)

Diffraction pattern in terms of irradiance
corresponding to Fourier transform

Driffraction partern _



Flane waves

a
f"““ {:;Tfnr"‘ fraunhafer diffraction
= J/ pattern |dfiracted orders)
. 9 A / y

[ %N -
Grating Bz ‘\' ] ¢
f\}/ : 1 * ¥~ Optical axis
m=2
Transferm
p]gne d,sInEH:h
dystnGy = A
2

-Suppose the spectrum of bright spots are aligned along the Y-axis.

*According to the grating equation, 3 _ jcing = dY_m where d is the spatial period of the ruling and

f

f is the focal length of the transform lens.

d

_ _ . A
*Spots appear at distances Y, from the optical axis is given by Y =m (—f)



Revisit Fraunhofer diffraction

*Recall 2D Fourier transform

A, (g, y) = j j B, (x, y)e Gexctiny) ddy

*This shows that the amplitude distribution or Fraunhofer diffraction pattern A, (ky,ky)
actually is the 2D Fourier transform of the aperture function E, (X,y).

*Also, recall the angular spatial frequencies, ky =— KX and ky = kY

I I _ _ _
-Under this circumstance, the amplitude distribution is focused on y axis only and distance r, is
replaced by the focal length f.

kY

*The angular spatial frequency becomes  ky ==

—_ . . A
-By definition, the angular spatial frequency may be writtenas ky =2zvy =Y, = m(;f)
m

*Thisgives Y* =7  corresponding to the spectrum of spatial frequencies displayed in the
diffraction pattern.

—



{al

L]

m

Spectrum of spatial frequencies: ¥ =y

*The central spot with m = 0 corresponds to a

normalized spatial frequency w, =0, the DC
component.
- *The first order (m = 1) spots above and below the
m =1 central spot represent the fundamental spatial
frequency w,, = 1/d.
m= - *Higher order (m>1) spots represent higher
" harmonics given by ms, .
s Each spot of light in the diffraction pattern
By M denotes the presence of a specific spatial
e ——— frequency, which is proportional to its distance
ol E—— L form the optical axis (zero-frequency location).
_ﬁ ﬁ-z
AL !

I | Figure 13.26 Diffracti




Problem 8

*Consider a Ronchi ruling with slits of width 0.2 mm illuminated by light of
wavelength 488 nm. A lens of focal length 40 cm Is used.

Determine

(a) the distances of the m = 1 and m = 3 spots from the central DC spot in the
diffraction pattern on the screen in the spectrum plane.

(b) the angular spatial frequencies associated with the m =1 and m = 3 spots.



Solution

*(a) RecallY,, =m (%f) and replace each variable with an appropriate numerical value.

8x10772)(0.4)
0.2x1073

v, = (1) 8 = 0.976 mm,Y, = 2.93 mm

*(b) By definition of an angular spatial frequency : ky = 2mvy Where vy = %

-'-le — Zn(oiz) = I?;ll_ll’:l'kyz = Zﬂ(i) = %

Higher spatial frequency

= I components

EAR =
GRATING - - < DC signal

NPT Higher spatial frequency

TRANIFPARENCY. OPTIC 4L Components

FRONT AND FOURIER SPECTRITI
CROSS SECTION



The DC contribution in the diffraction
pattern

*From the diffraction due to a grating, a DC spot (no spatial frequency) is always present.

*This seems to make a contradiction between what is produced from the Fourier transform (theory) and the
diffraction.

*To make the theory comply with the experimental result, the aperture function has to be modified accordingly.

Consider the next problem!




Problem 9
b fix) = A(1 +cos kyx)

24 *Determine the Fourier transform of f(x).




Solution

“F(k) = F{A + Acoskyx} = [ Ae**dx + [~ Acosk,xe™**dx
*From Problem 4, we already have F{A} = 2 A 5(k).
-Now we have to determine F{Acosk,x} which can rewritten as gF{e”‘Ox + e~ tkox}
“Therefore, F(k) = [, A(coskyx)e**dx = gffooo {ethoX 4 g=thoX )\ plhX gy
=§ ffooo {ei(k+k0)x 4 ei(k—ko)x} dx
=2{2m8(k + ko) + 26 (k — kg)} emmm Derive this!

- F(k) = F{A + Acoskyx} = mAS(k + ky) + 2mA 8(K) + +mAS(k — k¢)

/

| fix) = A(l + cos kpx) Fik)

2mA




Interpretation of the Fourier
Modified aperture function  Fourier transform - {rgnsform and Its corresponding
diffraction pattern

2A‘ fix) = A(1 +cos Kyx) 27TAI\ F(k)
R | DN S E> *The modified aperture function gives rise to an
addition DC component (at k = 0).
- X - Kk
Ko o tho *The three spatial frequency components in the

Fourier transform correspond to the three bright
spots appearing in the diffraction pattern.

*Note that the DC contribution is thought to be
originated from a uniform grey background and this
must be present in all physical images of this sort.

Aperture Diffraction pattern



http://www.imagemagick.org/Usage/fourier/

Diffraction pattern from horizontal
lines of varying widths

1

I

|
l\
Il

| J

?
|

'

Il
D
| lll“ III |
e

HORIZONTAL LINES OF VARYING WIDTHS

:
g
-
:

Allan Gillespie 1994 Phys. Educ. 29 127




Diffraction patterns from sinusoidal
gratmgs of varylng spatlal frequenues

AT
|

Several brightness sinusoidal signals and their Fourier transforms.

k, = fundamental
spatial frequency

*The spatial frequency ranges from that of the fundamental k, to the third, fifth, and seventh harmonics.




Optical filtering : arrangement

*The concept of Fourier transform can be applied to the process of intentionally blocking certain portion-
certain spatial frequencies- present in the diffraction pattern, to manipulate the image.

*First of all consider the arrangement of the optical filter.

Fourier transform

Aperture

3 i

Inverse Fourier
transform

trum '
A SR 4

-

frle—r < f+f f—r

Image

Fourier transform of the
aperture function is located at
the focal plane (spectrum
plane) of L2.

The spectrum plane of L2
serves as an aperture function
for L3 and associated Fourier
transform which is the
original aperture function is
formed on the image plane




Optical filtering : operation

*Since the aperture function can be the superposition of noise such as periodic
horizontal lines and a desired signal.

*When Fourier transform is applied to the aperture function which contains the
noise and desired signal. The diffraction pattern due to periodic horizontal lines
can produce a series of diffraction spots along the vertical direction in the
spectrum plane.

°If the diffraction spots can be blocked somehow, the periodic horizontal lines are
filtered out and the final image is the reproduction of the desired signal without
the periodic horizontal line present.



4-f coherent Imaging system

*An object is illuminated by a plane
Plane wave Object wave emitted from a laser.

plnne

plane imcge *Two I1dentical lenses T, and T,
perform transform and inverse

/ f y transform, respectively.

/@a -\ ¥ m 7 *This system performs the spatial
Fou\lter tra

it filtering by which certain spatial
/\“ frequencies that make up and

object are removed.

TN <. This can be done by inserting an
Inyey, For s appropriate mask at the transform
trangg, = “Urier |

rm plan




Object plane : fine wire Transform plane Image plane

TN

p - L

- ! ) - M
Fourier transform , = Inverse Fourier transform

L2000 nadénasvonrasersnner
SO0 RRIPETRARE " RORRBOERERERYS
PSS ERIRN"gave LR
SO N0ANE SPETAREIERTRERS
SRRSO RYRSVEDYRRRBERY
L ES AA AR R AR R RS AN BRI
L AL A AR AR R AR AT REET.
SP0RRTRORNRIRNTENORRSERRR 'S
(A AAKFEAL A A AR AT RIS
PRSP RORIRERRAROSREREY
DA r PRPREBREDIYEN
PRORBTORRNIEYERDRERARE
S0 RoNEDREBEIYARERYPYS
PR TRNORTRERYESRN

‘AR ARA R A AL AR R R A
AR A EXAARRRARAR LY
L A A 2 R A
L LA R A |
oeheote

LA Al A2 22 00

LA AL A A 222 ]

SaveRenaneS

A AL R A LA L LA L L L R A LA LR,
AL RS A AL R AR RS AN
‘000 ARV RETRARRERYERS
AL AR AL LA A AR A8 L 0 A0 22N L

Diffraction pattern of wire mesh on transform plane Image of fine wire seen on image plane without filter

49




Following the set up in the previous slide.
Which image is produced by blocking high spatial frequency components in

iy




333
et Different images are obtained when only certain
Pt i parts of the diffraction pattern are permitted to
- contribute to this image. The other portions of the
transform diffraction pattern are blocked by opaque tape.
plane

On image plane cmm oo .

MSPeRReERT] — I Central o & i i

! : Nine .o ! :

: : Dots e oo e o]le o : :

Vertical - : | permitted * *|** | ° ! |
Dots : : i | :
permitted ° © °|° | i “ o | i
g ] il 'i

| : Vertical - | !

s s 0 : : Dots e o oo|oele o ! !

Horizontal PG I ! (Off i Wil b ! !
Dots i ! Canter) . o s alels : :
permitted e ! i permitted o i :

1
Allan Gillespie 1994 Phys. Educ. 29 1217 51



Improved lunar image from Lunar orbiter

The image was obtained from the Lunar Orbiter. It is a panorama with evident bright lines between each stitched
frame. We want to eliminate these lines to render a smooth image. Notice that these horizontal lines occur
periodically in the image. Therefore, its Fourier transform is composed of points along the y-axis. By blocking
the signal along the y-axis of its transform, the result is a smooth picture as shown in (c)

Image from Lunar orbiter (a), its filtered Fourier transform (b) and the rendered image after filtering (c).



Defect removal In the spatial frequency domain using
two-dimensional Fourier transform of an image

4 SN y
~ ¥
F », r

Fourier inverse Fourier
transformation transformation

Filtering Notice : the diffraction

components caused by the
tilted co-sinusoidal band
are blocked.


https://commons.wikimedia.org/wiki/File:Fourier_filtering.png

How does an image appear Iif all spots are blocked
except the DC component, or undeviated diffraction?

*From the knowledge of Fourier series, the finer features of the image disappear when spots
corresponding to the higher spatial frequencies are blocked.

A diaphragm can be used to blocked all spatial frequency components except the DC
component.

*From the point of view of optical filtering, the diaphragm, which blocks all but frequencies
near the direct beam, functions as a low-pass optical filter.

A diaphragm, which blocks only those frequencies near the direct beam, functions as a
high-pass optical filter.

*A clear annular ring, which blocks the lowest and the highest frequencies, functions as a
band-pass optical filter.




Results of high and low spatial filtering

Original image Power spectrumwith  Resultofinverse ~ Powerspectrumwith  Resultof inverse

mask that filters low transform mask that passes low transform
frequencies frequencies

High pass filter Low pass filter




Homework#12

11.4* Show that F {1} = 2mwé(k).

11.5* Determine the Fourier transform of the function f(x) =

AcosKpx.

13.39 What would the pattern look like for a laserbeam diffracted by s Makc): . .Fraunhofer i .that
would arise if a transparency of Fig. P.13.40a served as the object.

ati ig. P.13.39? : :
el thiceGrossed ghitings of Fig. 2:12.39 How would you filter it to get Fig. P.13.40b?

Figure P.13.39 ' Figure P.13.40 EH)




