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Fourier Transform 
(FT) in temporal 
domain

Fourier Transform

…….transforms a function in the 
time domain into frequency domain 
and the inverse is also valid….

The output in the frequency domain is 
expressed in terms of the (temporal) 
frequency.

https://aavos.eu/glossary/fourier-transform/

Fourier Series is an expansion of a periodic function in terms of an 

infinite sum of sines and cosines.
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Fourier Transform in spatial domain 
•Now consider an image of a regular fluctuation. 

•By getting a closer look, across the horizontal direction; i.e., x direction, 
the variation of bright and dark bands may be represented by sine or co-
sinusoidal signal of a spatial domain.

•With an appropriate method, an image can be Fourier transformed to 
determine its spatial frequency components.

•For a more complicated image, a combination of harmonics are required.

•This idea is similar to the combination of harmonics to form a waveform 
in the temporal domain.

http://www.imagemagick.org/Usage/fourier/

X
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Fourier-transform pair : 
spatial position x and angular spatial frequency k

•Since an image or optical information under investigation is spatial distributed, the 
Fourier transform pair involves spatial position x and angular spatial frequency k.

•Fourier-transform pair in one dimension can be written as

•F(k) is the Fourier transform of f(x).
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𝑓 𝑥 =
1

2𝜋
න

−∞

∞

𝐹 𝑘 𝑒−𝑖𝑘𝑥𝑑𝑘

𝐹 𝑘 = න

−∞

∞

𝑓 𝑥 𝑒𝑖𝑘𝑥𝑑𝑥



Problem 0 : slit function

•Given a slit function in spatial domain as: 𝑓 𝑥 = ቐ
1 ; 𝑥 <

𝑎

2

0 𝑥 >
𝑎

2

•Determine the Fourier transform of f(x) in the spatial frequency domain
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Solution
•Recall 𝐹 𝑘 = ∞−

∞
𝑓 𝑥 𝑒𝑖𝑘𝑥𝑑𝑥

•Substituting f(x) into the Fourier transform, we have  𝐹 𝑘 = 𝑏/2−
𝑏/2

𝑒𝑖𝑘𝑥𝑑𝑥

•𝐹 𝑘 =
1

𝑖𝑘
𝑒𝑖𝑘

𝑏

2 − 𝑒−𝑖𝑘
𝑏

2 = 
2

𝑘
𝑠𝑖𝑛

𝑘𝑏

2
= 𝑏

sin
𝑘𝑏

2
𝑘𝑏

2

=…………………….

6http://ramanujan.math.trinity.edu/rdaileda/teach/m1311f07/limits_again.shtml

Example  of 

sinx/x function 

graph



Problem 1
Transform a Gaussian function

•Evaluate the Fourier transform of the Gaussian probability 
function,

•An example of the  bell-shaped curve is the cross-
sectional irradiance distribution of a laser beam in the 
TEM00 mode.
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𝑓 𝑥 = 𝐶𝑒−𝑎𝑥
2
; where 𝐶 =

𝑎

𝜋

https://co2laserpowermeter.com/the-importance-of-measuring-your-co2-lasers-output-power/
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Solution 
•Recall the Fourier transform  F(k) = F{f(x)} 

𝐹 𝑘 = ∞−
∞
𝑓 𝑥 𝑒𝑖𝑘𝑥𝑑𝑥 = ∞−

∞
𝐶𝑒−𝑎𝑥

2
𝑒𝑖𝑘𝑥𝑑𝑥

= ∞−
∞

𝐶𝑒−𝑎𝑥
2+𝑖𝑘𝑥 𝑒 Τ𝑘2 4𝑎𝑒− Τ𝑘2 4𝑎 𝑑𝑥

= ∞−
∞

𝐶𝑒− 𝑥 𝑎−𝑖 Τ𝑘 2 𝑎
2
− Τ𝑘2 4𝑎 𝑑𝑥

Letting 𝑥 𝑎 − 𝑖 Τ𝑘 2 𝑎 =  yields 𝐹 𝑘 =
𝐶

𝑎
𝑒− Τ𝑘2 4𝑎 ∞−

∞
𝑒−𝛽

2
𝑑

= 𝑒− Τ𝑘2 4𝑎 ; ∵ ∞−
∞
𝑒−𝑥

2
𝑑𝑥 = 𝜋
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Solution (cont.)
•Therefore,   F(k) = F{f(x)} = 𝑒− Τ𝑘2 4𝑎; still in the form of Gaussian function with k
as the variable.
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• This is evident that as a increases, f(x) becomes narrower while, in contrast, F(k) broadens.

• In other words, the shorter the pulse length, the broader the spatial frequency bandwidth.

𝑓 𝑥 = 𝐶𝑒−𝑎𝑥
2

F(k) = 𝑒− Τ𝑘2 4𝑎

What are x

and k?



The Dirac Delta Function
•In the space domain, an extremely small bright source of light embedded in a dark background 
is highly localized, two-dimensional, spatial pulse-a spike irradiance.

•A convenient idealized mathematical representation of this sharply peaked stimulus is the Dirac 
delta function (or Dirac impulse) (x).

•This is an infinitely narrow pulse on x = 0. It is also known as the unit impulse function.
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𝛿 𝑥 = ቊ
0 𝑥 ≠ 0
∞ 𝑥 = 0

and න

−∞

+∞

𝛿 𝑥 𝑑𝑥 = 1

https://en.wikipedia.org/wiki/Dirac_delta_function



The sifting property of  function

•Generally, with the shift of origin of an amount x0, the delta function 
can be written as

•This leads to a general form of the sifting property of the delta 
function,
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𝛿 𝑥 − 𝑥0 = ቊ
0 𝑥 ≠ 𝑥0
∞ 𝑥 = 𝑥0

න

−∞

+∞

𝛿 𝑥 − 𝑥0 𝑓 𝑥 𝑑𝑥 = 𝑓 𝑥0



Problem 2
Fourier transform of  function

1) Determine the Fourier transform of  𝛿 𝑥 − 𝑥0

2) Determine the Fourier transform of σ𝑗 𝛿 𝑥 − 𝑥𝑗

3)    If x1 = +d/2 and x2 = -d/2,  determine the Fourier transform of 𝛿 𝑥 − 𝑥1 + 𝛿 𝑥 − 𝑥2
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Solution
1) Recall      𝐹 𝑘 = ∞−

∞
𝑓 𝑥 𝑒𝑖𝑘𝑥𝑑𝑥

By substituting 𝑓 𝑥 = 𝛿 𝑥 − 𝑥0 , 𝐹 𝑘 = ∞−
∞
𝛿 𝑥 − 𝑥0 𝑒𝑖𝑘𝑥𝑑𝑥 .

Applying the sifting property, 𝐹 𝑘 = ∞−
∞
𝛿 𝑥 − 𝑥0 𝑒𝑖𝑘𝑥𝑑𝑥 = 𝑒𝑖𝑘𝑥0 .

2) Again, 𝐹 𝑘 = ∞−
∞
𝑓 𝑥 𝑒𝑖𝑘𝑥𝑑𝑥

By substituting 𝑓 𝑥 =σ𝑗 𝛿 𝑥 − 𝑥𝑗 and applying the sifting property.

We have 𝐹 𝑘 = σ𝑗 ∞−
+∞

𝛿 𝑥 − 𝑥𝑗 𝑒𝑖𝑘𝑥𝑑𝑥 = σ𝑗 𝑒
𝑖𝑘𝑥

𝑗

If j →, this summation represents a comb function.

In optics it is used to describe periodic structures such as diffraction gratings.

If the function can be written as a 

sum of individual functions, its 

transform is simply the sum of 

the transform of the component 

functions.
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Solution (cont.)
3) Using the result from 2), Fourier transform of 𝛿 𝑥 − 𝑥1 + 𝛿 𝑥 − 𝑥2 can be written as

𝐹 𝑘 = 𝑒𝑖𝑘𝑥1+ 𝑒𝑖𝑘𝑥2 = 𝑒𝑖𝑘
𝑑

2+ 𝑒−𝑖𝑘
𝑑

2 = 2cos 
𝑘𝑑

2

Thus the transform of the sum of these two symmetrical -function is a cosine function and  

vice versa.

https://www.cv.nrao.edu/course/astr534/FourierTransforms.html

Two delta functions and their cosine-function transform
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Problem 3
Fourier transform of asymmetric function
Calculate the Fourier transform of f(x) 

𝑓 𝑥 = 𝛿 𝑥 − +
𝑑

2
− 𝛿 𝑥 − −

𝑑

2
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Solution
•Recall 𝐹 𝑘 = ∞−

∞
𝑓 𝑥 𝑒𝑖𝑘𝑥𝑑𝑥

•Substituting 𝑓 𝑥 = into the above equation, then 

𝐹 𝑘 = ∞−
∞
{𝛿 𝑥 − +

𝑑

2
− 𝛿 𝑥 − −

𝑑

2
𝑒𝑖𝑘𝑥}𝑑𝑥; using the sifting property

= 𝑒𝑖𝑘
𝑑

2 - 𝑒−𝑖𝑘
𝑑

2 = 2isin kd/2

Two delta functions and 

their real sine-function 

transform
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Problem 4
•Show that the Fourier transform of a constant A is the delta function with an amplitude 2A.

17



Solution
•Recall 𝐹 𝑘 = ∞−

∞
𝑓 𝑥 𝑒𝑖𝑘𝑥𝑑𝑥

•Substituting f(x) = A into the above equation: 𝐹 𝑘 = ∞−
∞
𝐴𝑒𝑖𝑘𝑥𝑑𝑥

= A−∞
∞
𝑒𝑖𝑘𝑥 𝑑𝑥 ------(A)

•We have to evaluate −∞
∞
𝑒𝑖𝑘𝑥 𝑑𝑥 and this can be done indirectly by using the fact that

F-1((k)) =
1

2𝜋
∞−
∞

(k) 𝑒−𝑖𝑘𝑥𝑑𝑘 = 
1

2𝜋
; from sifting property

•We then have                 FF-1 ((k))  = (k) = 
1

2𝜋
∞−
∞
𝑒𝑖𝑘𝑥 𝑑𝑥 ----------(B)

•Substitute (B) into (A),   F(k) = 2𝜋A (k) 
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Fourier transform of two symmetrical 
and asymmetrical  functions

•This shows that the Fourier transform of two symmetrical delta functions gives a cosine function.

•Also the Fourier transform of real and even function will also be real and even.

19

Two delta functions and their cosine-function transform Two delta functions and their sine-function transform



Two dimensional transform
•Optics generally involved two-dimensional signal: for example, the field across an 
aperture or the flux-density distribution over and image plane.

•The Fourier transform pair take the form,

•Where kx and ky are angular spatial frequencies.
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Any non periodic function of 

two variables f(x,y) can be synthesized

from a distribution of plane waves, 

each with amplitude F(kx,ky) and

constant phase.



Fraunhofer diffraction (1)
•Consider the Fraunhofer diffraction 
pattern due to an arbitrary aperture 
situated in an xy-plane (Aperture 
plane).

•Plane monochromatic waves diffract 
from the aperture (xy) plane.

•The diffraction pattern is observed 
in the XY-plane, called “spectrum 
plane”, a distance Z along the axis.

•The contribution dEp at an arbitrary 
point P due to the light amplitude 
from an elemental area da
surrounding point O in aperture is 
given by

21

Fraunhofer diffraction in the spectrum XY-plane due to 

an aperture in the xy-plane.
𝑑𝐸𝑝 =

𝐸𝐴𝑑𝑎

𝑟
𝑒𝑖 𝜔𝑡−𝑘𝑟

Incident 

plane wave



Fruaunhofer diffraction (2)

•Recall the contribution of electric field dEp at point P on spectrum plane:𝑑𝐸𝑝 =
𝐸𝐴𝑑𝑎

𝑟
𝑒𝑖 𝜔𝑡−𝑘𝑟

•Amplitude of the contribution term decreases with distance r (distance from point O to point P).

•The illumination of the aperture may be non-uniform and generally given as EA = EA(x,y).

•According to the figure in the previous page, r can be approximately given as  𝑟 = 𝑟0 1 −
𝑥𝑋+𝑦𝑌

𝑟0
2

(derived in problem 5)

•By substituting r in the phase of dEp and r in amplitude with Z, 𝑑𝐸𝑝 =
𝐸𝐴𝑑𝑥𝑑𝑦

𝑍
𝑒𝑖𝜔𝑡𝑒

−𝑖𝑘 𝑟0−
𝑥𝑋+𝑦𝑌

𝑟0

•Upon integration over the area of the aperture, thus  𝐸𝑝 =
𝑒𝑖 𝜔𝑡−𝑘𝑟0

𝑍
𝐸𝐴 𝑥, 𝑦 𝑒

𝑖𝑘
𝑥𝑋+𝑦𝑌

𝑟0 𝑑𝑥𝑑𝑦

22



Problem 5
•From the figure,

23

𝑟2 = 𝑋 − 𝑥 2 + 𝑌 − 𝑦 2 + 𝑍 − 0 2

and
𝑟0
2 = 𝑋2 + 𝑌2 + 𝑍2

so that 𝑟2 = 𝑟0
2 − 2𝑥𝑋 − 2𝑦𝑌 + 𝑥2 + 𝑦2

∴ 𝑟 = 𝑟0 1 − 2
𝑥𝑋 + 𝑦𝑌

𝑟0
2

1
2

; ∵ 𝑥, 𝑦 negligible

Using binomial expansion 1 + 𝑢
1
2

= 1 +
1

2
𝑢 +⋯

∴ 𝑟 = 𝑟0 1 −
𝑥𝑋 + 𝑦𝑌

𝑟0
2



Fraunhofer diffraction (3)
•Define the relative amplitude distribution Ap of the electric field in the spectrum plane.

•Also, introduction the angular spatial frequencies,

•This gives

•This shows that the amplitude distribution or Fraunhofer diffraction pattern  Ap (kX,kY) 
actually is the 2D Fourier transform of the aperture function EA  (x,y).

•This also reveals that the inverse transform gives

24

𝐴𝑝 = 𝑍𝐸𝑝𝑒
−𝑖 𝜔𝑡−𝑘𝑟0 =ඵ𝐸𝐴 𝑥, 𝑦 𝑒

𝑖𝑘
𝑥𝑋+𝑦𝑌
𝑟0 𝑑𝑥𝑑𝑦

𝑘𝑋 ≡
𝑘𝑋

𝑟0
and 𝑘𝑌 ≡

𝑘𝑌

𝑟0

𝐴𝑝 𝑘𝑋, 𝑘𝑌 =ඵ𝐸𝐴 𝑥, 𝑦 𝑒𝑖 𝑘𝑋𝑥+𝑘𝑌𝑦 𝑑𝑥𝑑𝑦

𝐸𝐴 𝑥, 𝑦 =
1

2𝜋 2ඵ𝐴𝑝 𝑘𝑋, 𝑘𝑌 𝑒−𝑖 𝑘𝑋𝑥+𝑘𝑌𝑦 𝑑𝑘𝑋𝑑𝑘𝑌



Fourier method in diffraction theory
•We have arrived at the key point: the field distribution in the Fraunhofer diffraction 
pattern is the Fourier transform of the field distribution across the aperture (i.e., the 
aperture function)

•For each point on the image plane (spectrum plane), there is a corresponding spatial 
frequency.

•The inverse transform is then
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𝐴𝑝 𝑘𝑋, 𝑘𝑌 =ඵ𝐸𝐴 𝑥, 𝑦 𝑒𝑖 𝑘𝑋𝑥+𝑘𝑌𝑦 𝑑𝑥𝑑𝑦 or 𝐴𝑝 𝑘𝑋, 𝑘𝑌 = 𝐹 𝐸𝐴 𝑥, 𝑦

𝐸𝐴 𝑥, 𝑦 =
1

2𝜋 2ඵ𝐴𝑝 𝑘𝑋, 𝑘𝑌 𝑒−𝑖 𝑘𝑋𝑥+𝑘𝑌𝑦 𝑑𝑘𝑋𝑑𝑘𝑌 or 𝐸𝐴 𝑥, 𝑦 = 𝐹−1 𝐴𝑝 𝑘𝑋, 𝑘𝑌



Visual concept of the diffraction 

Field distribution 

across an aperture 

described by the 

aperture function 

𝑬𝑨 𝒙, 𝒚

https://ef.engr.utk.edu/hyperphysics/hbase/phyopt/mulslid.html

𝐴𝑝 𝑘𝑋, 𝑘𝑌 = 𝐹 𝐸𝐴 𝑥, 𝑦

Fraunhofer 

diffraction pattern 

= Fourier 

transform of the 

aperture function

NOTE : The evaluation of the diffraction pattern from an 

aperture is equivalent to take the Fourier transform of an 

aperture function e.g. single slit, double slit, circular aperture etc.
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https://ef.engr.utk.edu/hyperphysics/hbase/phyopt/mulslid.html


Problem 6
Fourier transform of a Single slit

•Assuming that there are no phase or amplitude variations across the aperture, the aperture 
function EA(x,y) has the form of a square pulse,

•Determine the field distribution from the single slit on the spectrum plane.

27

𝐸𝐴 𝑥, 𝑦 =
𝐸0 ; 𝑦 ≤

𝑏

2

0 ; 𝑦 >
𝑏

2



Solution
•From the given aperture function, this problem is really 1D Fourier transform along y axis.

𝐴𝑝 𝑘𝑦 = 𝐹 𝐸𝐴 𝑦

= ∞−
∞
𝐸𝐴 𝑦 𝑒𝑖𝑘𝑦𝑑𝑦

= 𝐸0 
−
𝑏

2

𝑏

2 𝑒𝑖𝑘𝑌𝑦𝑑𝑦

= 𝐸0𝑏 sin 𝑐
𝑘𝑌𝑏

2

y

+b/2-b/2

EA(y)

E0

𝐴𝑝 𝑘𝑦

𝑘𝑦

FT

• Note that the Fourier transform gives the diffraction in terms of the electric field 

distribution NOT the irradiance.

• The diffraction pattern is composed a large number of spatial frequencies.

28



Single slit Fraunhofer irradance
diffraction pattern

(a) Single slit diffraction pattern. 
Monochromatic light passing through a 
single slit has a central maximum and 
many smaller and dimmer maxima on 
either side. The central maximum is six 
times higher than shown. 

(b) The drawing shows the bright central 
maximum and dimmer and thinner 
maxima on either side.

29https://openstax.org/books/college-physics/pages/27-5-single-slit-diffraction

𝐼 = 𝐴2𝑝 𝑘𝑦 = 𝐸20𝑏
2 sin2 𝑐

𝑘𝑌𝑏

2

b



Problem 7
Fourier transform of a rectangular aperture
•Assuming that there are no phase or amplitude variations across the aperture, the aperture 
function EA(x,y) is given by,

•Determine the field distribution from the rectangular aperture on the spectrum plane.

𝐸𝐴 𝑥, 𝑦 =
𝐸0 ; 𝑥 

𝑎

2
, 𝑦 ≤

𝑏

2

0 ; 𝑥 >
𝑏

2
, 𝑦 >

𝑏

2
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Solution

𝐴𝑝 𝑘𝑋, 𝑘𝑌 = 𝐹 𝐸𝐴 𝑥, 𝑦

∞−=
∞
∞−
∞
𝐸𝐴 𝑥, 𝑦 𝑒𝑖 𝑘𝑋𝑥+𝑘𝑌𝑦 𝑑𝑥𝑑𝑦

=  𝐸0 𝑎−
2

𝑎

2 𝑒𝑖𝑘𝑋𝑥𝑑𝑥 
−
𝑏

2

𝑏

2 𝑒𝑖𝑘𝑌𝑦𝑑𝑦

=𝐸0𝑎𝑏 sin 𝑐
𝑘𝑋𝑎

2
sin 𝑐

𝑘𝑌𝑏

2

http://gsvit.net/tutorial/a_grating.php

𝐸𝐴 𝑥, 𝑦 =
𝐸0 ; 𝑥 

𝑎

2
, 𝑦 ≤

𝑏

2

0 ; 𝑥 >
𝑏

2
, 𝑦 >

𝑏

2

Aperture function

Diffraction pattern or Fourier 

transform of the rectangular 

aperture

A large number of spatial frequencies are 

distributed over the spectrum surface.
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Diffraction pattern of
a grating

•For a transmission grating, the concept 
of the Fourier transform can be applied in 
creating the diffraction pattern.

•The aperture function illuminated by a 
plane wave is considered to be a periodic 
step function.

•The Fourier transform lens helps to 
shorten the distance to the image plane.

•The Fraunhofer diffraction pattern, which 
is Fourier transform, is produced on the 
image plane or spectrum plane.

•Diffraction spots on the image plane 
represent the spatial frequencies.

•As the spots in the image plane get 
farther from the central axis, their 
associated spatial frequencies increase.

32

Fraunhofer diffraction pattern 

on the spectrum plane



Ronchi ruling
•Consider an object with periodic structure 
such as the Ronchi ruling, a grating of 
parallel straight lines with large grating 
space, whose opaque and transparent 
regions are of equal width.

•The object is illuminated from behind by a 
monochromatic plane wave.

•The Ronchi ruling acts as a coarse grating 
producing a series of bright spots that 
correspond to the  various order of 
diffraction.

33https://en.wikipedia.org/wiki/Ronchi_ruling

https://en.wikipedia.org/wiki/Ronchi_ruling


oEach spot of light in the diffraction 
pattern denotes the presence of a specific 
spatial frequency, which is proportional 
to its distance from the optical axis (zero-
frequency) location.
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Aperture function

Fourier transform

Diffraction pattern in terms of irradiance 

corresponding to Fourier transform

The aperture function introduced by Ronchi ruling can 

be represented by a periodic step function



•Suppose the spectrum of bright spots are aligned along the Y-axis.

•According to the grating equation,                                                where d is the spatial period of the ruling and

f is the focal length of the transform lens.

•Spots appear at distances Ym from the optical axis is given by 

35http://iopscience.iop.org/article/10.1088/0031-9120/29/3/003/pdf

𝑚𝜆 = 𝑑 sin 𝜃 = 𝑑
𝑌𝑚
𝑓

𝑌𝑚 = 𝑚
𝜆𝑓

𝑑

y

Optical axis



Revisit Fraunhofer diffraction
•Recall 2D Fourier transform

•This shows that the amplitude distribution or Fraunhofer diffraction pattern  Ap (kX,kY) 
actually is the 2D Fourier transform of the aperture function EA  (x,y).

•Also, recall the angular spatial frequencies,

•Under this circumstance, the amplitude distribution is focused on y axis only and  distance r0 is 
replaced by the focal length f.

•The angular spatial frequency becomes

•By definition, the angular spatial frequency may be written as

•This gives                   corresponding to the spectrum of spatial frequencies displayed in the 

diffraction pattern.
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Spectrum of spatial frequencies :

•The central spot with m = 0 corresponds to a 
normalized spatial frequency Y = 0, the DC 
component.

•The first order (m = 1) spots above and below the 
central spot represent the fundamental spatial 
frequency Y1 = 1/d.

•Higher order (m>1) spots represent higher 
harmonics given by mY1 .

•Each spot of light in the diffraction pattern 
denotes the presence of a specific spatial 
frequency, which is proportional to its distance 
form the optical axis (zero-frequency location).
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Problem 8
•Consider a Ronchi ruling with slits of width 0.2 mm illuminated by light of 
wavelength 488 nm. A lens of focal length 40 cm is used. 

Determine

(a) the distances of the m = 1 and m = 3 spots from the central DC spot in the 
diffraction pattern on the screen in the spectrum plane.

(b) the angular spatial frequencies associated with the m = 1 and m = 3 spots.
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Solution
•(a)  Recall 𝑌𝑚 = 𝑚

𝜆𝑓

𝑑
and replace each variable with an appropriate numerical value.

𝑌1 = 1
488×10−9 0.4

0.2×10−3
= 0.976 mm,𝑌2 = 2.93 mm

•(b) By definition of an angular spatial frequency : 𝑘𝑌 = 2𝜋𝜈𝑌 where 𝜈𝑌 =
𝑚

𝑑

𝑘𝑌1 = 2𝜋
1

0.2
=

31.4

mm
, 𝑘𝑌2 = 2𝜋

3

0.2
=

94.2

mm

http://www.eng.warwick.ac.uk/~espbc/courses/undergrad/lec8/Image2.gif

Higher spatial frequency 

components

Higher spatial frequency 

components

DC signal
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The DC contribution in the diffraction 
pattern 

•From the diffraction due to a grating, a DC spot (no spatial frequency) is always present.

•This seems to make a contradiction between what is produced from the Fourier transform (theory) and the 
diffraction.

•To make the theory comply with the experimental result, the aperture function has to be modified accordingly.

•Consider the next problem!
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Problem 9
•Determine the Fourier transform of f(x).
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Solution
•𝐹 𝑘 = 𝐹 𝐴 + 𝐴𝑐𝑜𝑠𝑘0𝑥 = ∞−

∞
𝐴𝑒𝑖𝑘𝑥𝑑𝑥 + ∞−

∞
𝐴𝑐𝑜𝑠𝑘0𝑥𝑒

𝑖𝑘𝑥𝑑𝑥

•From Problem 4, we already have F{A} = 2𝜋A (k).

•Now we have to determine  F{𝐴𝑐𝑜𝑠𝑘0𝑥} which can rewritten as  
𝐴

2
F{𝑒𝑖𝑘0𝑥 + 𝑒−𝑖𝑘0𝑥}.

•Therefore, F(k) = −∞
∞
𝐴(𝑐𝑜𝑠𝑘0𝑥)𝑒

𝑖𝑘𝑥𝑑𝑥 =
𝐴

2
∞−
∞

{𝑒𝑖𝑘0𝑥 + 𝑒−𝑖𝑘0𝑥}𝑒𝑖𝑘𝑥𝑑𝑥

= 
𝐴

2
∞−
∞

{𝑒𝑖(𝑘+𝑘0)𝑥 + 𝑒𝑖(𝑘−𝑘0)𝑥} 𝑑𝑥

= 
𝐴

2
2𝜋𝛿 𝑘 + 𝑘0 + 2𝜋𝛿 𝑘 − 𝑘0

𝐹 𝑘 = 𝐹 𝐴 + 𝐴𝑐𝑜𝑠𝑘0𝑥 = 𝜋A𝛿 𝑘 + 𝑘0 + 2𝜋A (k) + +𝜋A𝛿 𝑘 − 𝑘0
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Derive this!



Interpretation of the Fourier 
transform and its corresponding 
diffraction pattern

•The modified aperture function gives rise to an 
addition DC component (at k = 0).

•The three spatial frequency components in the 
Fourier transform correspond to the three bright 
spots appearing in the diffraction pattern.

•Note that the DC contribution is thought to be 
originated from a uniform grey background and this 
must be present in all physical images of this sort.
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Modified aperture function Fourier transform

Diffraction patternAperture

http://www.imagemagick.org/Usage/fourier/

http://www.imagemagick.org/Usage/fourier/


Diffraction pattern from horizontal 
lines of varying widths
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Diffraction patterns from sinusoidal 
gratings of varying spatial frequencies

•Several brightness sinusoidal signals and their Fourier transforms. 

•The spatial frequency ranges from that of the fundamental k0 to the third, fifth, and seventh harmonics.

k0 = fundamental 

spatial frequency
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Optical filtering : arrangement
•The concept of Fourier transform can be applied to the process of intentionally blocking certain portion-
certain spatial frequencies- present in the diffraction pattern, to manipulate the image.

•First of all consider the arrangement of the optical filter.
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• Fourier transform of the 

aperture function is located at 

the focal plane (spectrum 

plane) of L2.

• The spectrum plane of L2 

serves as an aperture function 

for L3 and associated Fourier 

transform which is the 

original aperture function is 

formed on the image plane

Fourier transform Inverse Fourier 

transform



Optical filtering : operation
•Since the aperture function can be the superposition of noise such as periodic 
horizontal lines and a desired signal.

•When Fourier transform is applied to the aperture function which contains the 
noise and desired signal. The diffraction pattern due to  periodic horizontal lines 
can produce a series of diffraction spots along the vertical direction in the 
spectrum plane.

•If the diffraction spots can be blocked somehow, the periodic horizontal lines are 
filtered out and the final image is the reproduction of the desired signal without 
the periodic horizontal line present.
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4-f coherent imaging system
•An object is illuminated by a plane 
wave emitted from a laser.

•Two identical lenses Tt and Ti

perform transform and inverse 
transform, respectively.

•This system performs the spatial 
filtering by which certain spatial 
frequencies that make up and 
object are removed.

•This can be done by inserting an 
appropriate mask at the transform 
plane T.
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Image of fine wire seen on image plane without filterDiffraction pattern of wire mesh on transform plane

Image planeTransform plane
Object plane : fine wire

Fourier transform Inverse Fourier transform



Following the set up in the previous slide.
Which image is produced by blocking high spatial frequency components in 
horizontal components?
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Different images are obtained when only certain 

parts of the diffraction pattern are permitted to 

contribute to this image. The other portions of the 

diffraction pattern are blocked by opaque tape.
On 

transform 

plane

On image plane

permitted

permitted

permitted

permitted



Improved lunar image  from Lunar orbiter

The image was obtained from the Lunar Orbiter. It is a panorama with evident bright lines between each stitched 
frame. We want to eliminate these lines to render a smooth image. Notice that these horizontal lines occur 
periodically in the image. Therefore, its Fourier transform is composed of points along the y-axis. By blocking 
the signal along the y-axis of its transform, the result is a smooth picture as shown in (c)

52https://ghdoblado.wordpress.com/2016/10/13/properties-and-applications-of-2d-fourier-transform/

Image from Lunar orbiter (a), its filtered Fourier transform (b) and the rendered image after filtering (c).

filter Final image



Defect removal in the spatial frequency domain using 
two-dimensional Fourier transform of an image

53https://commons.wikimedia.org/wiki/File:Fourier_filtering.png

Notice : the diffraction 

components caused by the 

tilted co-sinusoidal band 

are blocked.

https://commons.wikimedia.org/wiki/File:Fourier_filtering.png


How does an image appear if all spots are blocked 
except the DC component, or undeviated diffraction?

•From the knowledge of Fourier series, the finer features of the image disappear when spots 
corresponding to the higher spatial frequencies are blocked.

•A diaphragm can be used to blocked all spatial frequency components except the DC 
component.

•From the point of view of  optical filtering, the diaphragm, which blocks all but frequencies 
near the direct beam, functions as a low-pass optical filter.

•A diaphragm, which blocks only those frequencies near the direct beam, functions as a 
high-pass optical filter. 

•A clear annular ring, which blocks the lowest and the highest frequencies, functions as a 
band-pass optical filter.
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Results of high and low spatial filtering
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High pass filter Low pass filter



Homework#12
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